
Educational Tools for Csound

Educational Tools for Csound

Gianni Della Vittoria,

Liceo Artistico e Musicale “A. Canova” di Forlì (Italy)
gianni.dellavittoria@liceocanovaforli.edu.it

Abstract. This paper presents some ideas to produce software applications
aimed at simplifying the musical composition process with Csound for stu-
dents and beginners. The tools developed for this purpose aspire to reduce the
distraction that comes from having to carry out intermediate tasks that could be
automated. They concern the editor's text expansion, automatic GUI and plot -
ting, fast syntax for operations with arrays, python-style list comprehension,
multichannel expansion for Csound opcodes. Although initially designed for
the beginner, these tools may also prove useful for experienced users, freeing
them from mechanical secondary tasks.

Keywords: workflow, text expansion, compositional tools, fast syntax, GUI,
multichannel expansion, arrays, list comprehension

1 Introduction

Working with children in a musical learning experience in which the beginner's effort is
aimed first of all at orienting himself in the face of an ambitious project such as com-
posing a piece of music with a symbolic language like Csound, shows which are the
main obstacles under a different light and suggests possible approaches.

From these observations arises the need to develop work tools capable of shortening
the distance from the imagined goal, perhaps to discover that they could even be useful
to the expert user. With the present paper I want to explore some ideas that can be the
basis for designing software tools for helping Csound learners.

Basically everything starts from the Csound code, which remains at the core. Some
of the facilities I propose aim at reducing the distracting power of secondary tasks that
could be automated. I suggest a syntax that can decorate the original Csound code in or-
der to hid what is not strictly necessary to the user, such as code specific to create
graphical controllers or plot signals.

These ideas can take tangible form in a set of tools or directly in a unique workspace
application, but some of them, like the array facilities, could be considered to be safely
included in the Csound parser itself with no apparent conflicts with the current syntax.

2 Text expansion on more lines with commented name variables
for opcodes and UDOs

Suppose we have built a complex audio process with about twenty control parameters
and we have enclosed it in a UDO with the name of BigSynth.
 How should text expansion take place in an educational editor, wishing to simplify as
much as possible the association of the value with the right parameter? The practice to
display the names of the parameters is usually adopted, which can then be replaced with
numerical values by stepping through them with the tabulation. However, if you want to
keep the name of the parameter visible, you have to transcribe this name into a variable
and copy it above. It might as well be that the text expansion itself already proceeds
with this operation, so as soon as we type “BigSynth” we get:

2 Gianni Della Vittoria

kAmp = .2
kFundFreq = 220
kPar3 = .95
kPar4 = 486.94
 ...
kPar20 = 1.02
aOut BigSynth kAmp,kFundFreq, kPar3, kPar4, … kPar20

Certainly clear, but these variables could conflict by homonymy with those of other
UDOs or opcodes. Then perhaps it is preferable that the parameter name is simply sug-
gested as a comment.

aOut = BigSynth(
 /*kAmp*/ .2,
 /*kFundFreq*/ 220,
 /*kPar3*/ .95,
 /*kPar4*/ 486.94,
 …
 /*kPar20*/ 1.02
)

A toggle command will then suffice to return all the values on a single line without

comments, if the user should prefer a contracted form.
The parameter values should be pre-entered by default as much as possible, so that

the user can immediately listen to the working UDO and intervene just on what he
wants to change. It will be the user himself who defines these default values for subse-
quent work sessions, with even the possibility of having complex behaviors. For exam-
ple, instead of kAmp = .2 it could be defined as:

/*kAmp*/ linenr:k(1,.02,3,.01),

3 Fast syntax for calling graphics controllers

Sometimes, while we are in the preparation phase of the sound material, we need
graphic controls maybe just to quickly experiment with some possibilities, without the
distraction of having to concentrate on creating a GUI.
 A very simple way is to add a keyword next to the number you want to turn into an
envelope. So if you want to display a slider for the amplitude and one for the frequency
of an oscillator, just put the words @sl next to the respective numbers

poscil(.2@sl, 1000@sl, ifn)

where .2 and 1000 represent the maximum value of the ranges. The default minimum
is .0001, but it can be changed. Furthermore, more precise indications can be given by
adding elements: 2000 @sl_log for example to produce logarithmic interpolation.

3.1 Envelope Designer

If instead of placing the @sl symbol we had used @env next to the parameter value,
we would have opened a graphical interface that enables us to design a sophisticated en-
velope in which each segment can have its own curve (linear, exponential, cosine, ...)
and an independent curvature coefficient, as well as a proportionate lfo and a random
component.

The number next to which the @env symbol is placed also represents the full scale
value here. Each segment can then have absolute duration values or relative to (p3 - ab-

Educational Tools for Csound

solute durations). It should be possible to have or create even very complex envelope
presets from which the user can easily choose.

Once he has perfected the desired envelope profile, the envelope will be created di-
rectly in Csound language, so the user can return the Csound code snippet obtained in
the original file, perhaps by making the graphical design interface disappear.

3.2 GEN Table Builder

To draw a waveform with GEN 10 and 11, it would be useful to be able to view and
edit the harmonics with a graphic approach. Just put the words @gen next to the number
that represents the function and the graphic control interface will appear.

3.3 GUI presets

 Counting on the fact that the data obtained from all the GUI controllers of the entire
.csd file can be saved, it allows you to recall certain sound situations obtained perhaps
after extensive experimentation, and to reuse the acquired sounds also in the future in
the form of multiple variations.
 The user will therefore no longer have to worry about making many versions of the
same instr or UDO just to write down the most interesting values found, if he wants to
rely on the presets system.

4 Plotter

The opportunity to view graphs is particularly useful for educational purposes, and
must be immediately accessible by the user, without unnecessary distractions. In this
way, thanks to the usual system of placing a symbol next to the variable to be investi-
gated, it should be possible to monitor control (k) and audio (a) variables, as well as
spectra and spectrograms.

It is important to be able to understand how certain parameters move in relation to
the real-time sound performance, for which tools are provided that are able to align and
compare audio variables with k variables.

Each variable labeled @plot will be displayed, and it could also be interesting to
show overlays from different instances playing simultaneously.

5 Arrays

5.1 Array shortcuts syntax

To facilitate the use of arrays in a more dynamic form, in addition to the regular Csound
opcodes, the use of a syntax is being tested where the array is directly declared with the
data enclosed in square brackets, followed by the @ symbol:

[1, 2, 3]@

The @ symbol can actually be omitted, since the system detects the use of square brack-
ets with contents other than what would be syntactically acceptable. If the user prefers
to make it clear that it is a syntactic variation with respect to the pure Csound language,

4 Gianni Della Vittoria

or this syntax should conflict with that of future versions of Csound, he can make the
usual symbol explicit.
 A series of elementary operations on one-dimensional arrays has been codified, again
in order to make the use of these very useful tools more immediate. Here is an excerpt
showing the equivalent syntax in the current Csound language (6.17).

Table 1. Arrays operations

New syntax Equivalent Csound Description
iar[] = [1, 2, 3]@
iar[] = [1, 2, 3]

iar[] = fillarray(1, 2, 3)
iar[] = fillarray(1, 2, 3)

1 2 3
1 2 3

kenvs[] = [k1, k2, k3] kenvs[] = fillarray(k1, k2, k3) k1 k2 k3
[1..10] genarray(1, 10) 1 2 3 4 … 10
[0..1, .1]
[1, 2, 3] + [4, 5, 6]
[1, 2, 3] +@ [4, 5, 6]
[1, 2, 3] * 2
[1, 2, 3] *@ 2

genarray(0, 1, .1)
fillarray(1, 2, 3) + fillarray(4, 5, 6)

fillarray(1, 2, 3) * 2

0 .1 .2 .3 … 1
5 7 9
1 2 3 4 5 6
2 4 6
1 2 3 1 2 3

5.2 Multichannel expansion

As in SuperCollider, multichannel expansion consists in automatically transforming a
normal opcode into an array with various instances of the same opcode. The mechanism
works based on the use of an array as the input value of an opcode where only a scalar
value would be allowed. Let's look at the following example.

1 iatc[] = 1/[1..10] ;1,.5, .33, .25, …
2 kenv[] = linseg(0, iatc, 1, p3-iatc, 0)
3 kfreq = 100 + lfo(10, 1)
4 asound[] = poscil(kenv, kfreq * [1..10])
5 out sum(asound) / 10

In line 1 an array is created, then used as the attack time of a linseg envelope in line
2. Since the linseg opcode does not accept an array among its durations, the mechanism
is activated that transforms the linseg into an array of various linsegs, each with an at-
tack time taken from each value of the iatc array. Basically, it is as if line 2 was nor-
mally written like this:

kenv[] = fillarray(
 linseg(0, iatc[0], 1, p3-iatc[0], 0),
 linseg(0, iatc[1], 1, p3-iatc[1], 0),
 linseg(0, iatc[2], 1, p3-iatc[2], 0),

...
 linseg(0, iatc[9], 1, p3-iatc[9], 0)
)

In line 4 we have a similar case, but this time with 2 arrays: kenv and [1..10]. So also
here asound will become an array of 10 audio channels, with frequencies equal to the
first 10 harmonics of a vibrato fundamental of 100 Hz, and amplitudes with a triangular
envelope with 10 different attacks. Normally written, it would have looked like this:

asound[] = fillarray(
 poscil(kenv[0], kfreq * 1),
 poscil(kenv[1], kfreq * 2),
 poscil(kenv[2], kfreq * 3),

...

Educational Tools for Csound

 poscil(kenv[9], kfreq * 10)
)

Finally, in line 5, the opcode sum, already in Csound, is responsible for adding up all
the signals from the array in order to obtain the mix for the output. It is clear how much
code saving is appreciable, without going to far from clarity.

If the lengths of the input arrays were different from each other, the shorter arrays
would loop until the length of the larger one was exhausted.

5.3 Array with Python list comprehension

Another way to create arrays, even very complex ones, could be to resort to the syntax
of Python list comprehensions. With the constraint of creating a list of numbers, which
will then be automatically converted into an array of floats, you can use all the formulas
provided by Python for list comprehensions, with various nested loops of for and if fil-
ters. I'm not here to explain the details, which are well documented online, but I'll just
give a small example to appreciate the countless possibilities.
 If we wanted to build a harmonic sound with 10 sinusoidal sounds and 4 detuning
copies for each harmonic, we could do it in a single line using the list comprehension.

a1[] = poscil(
 kamp,
 kbaseFq * [i+j/100 for i in range(1,11) for j in range(5)]
)

The list comprehension [i+j/100 for i in range(1,11) for j in range(5)] in fact produces
this list of coefficients:
[1.0, 1.01, 1.02, 1.03, 1.04, 2.0, 2.01, 2.02, 2.03, 2.04, 3.0, 3.01, 3.02, 3.03, 3.04, 4.0,
4.01, 4.02, 4.03, 4.04, 5.0, 5.01, 5.02, 5.03, 5.04, 6.0, 6.01, 6.02, 6.03, 6.04, 7.0, 7.01,
7.02, 7.03, 7.04, 8.0, 8.01, 8.02, 8.03, 8.04, 9.0, 9.01, 9.02, 9.03, 9.04, 10.0, 10.01,
10.02, 10.03, 10.04]

6 Organization of files, instr, UDOs, snippets and presets

The availability of a lot of material and many possibilities must not let our guard down
on one of the central issues in the coordination of a complex project such as that of writ-
ing a piece with a symbolic language.
 In a didactic environment, therefore, it is necessary to reflect on this theme. A require-
ment of a good student work platform is to be able to find what you need without too
many distractions. Then you need an efficient search facility in the contents of files, but
also a file archiving system that enriches information. Thus, next to the system of fold-
ers in which all the material created up to now is neatly arranged and which could be
useful as an inspiration for future work, a tagging system that crosses all the files trans-
versely according to different and more logical groupings seems more useful than fold-
ers.
 It would also be a good practice to include a description in each file we save, which
will then be shown in the search dialog box.

6 Gianni Della Vittoria

References

1. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)
2. Heintz J., Sigurðsson H. et al.: The Csound FLOSS Manual (2020)
3. Csound Github site, http://csound.github.io

http://csound.github.io/

	3.1 Envelope Designer
	3.2 GEN Table Builder
	3.3 GUI presets
	5.1 Array shortcuts syntax
	5.2 Multichannel expansion
	5.3 Array with Python list comprehension

